Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2763
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherChen, L. F.-
dc.contributor.otherWang, W. L.-
dc.date.accessioned2022-03-25T07:02:54Z-
dc.date.available2022-03-25T07:02:54Z-
dc.date.issued2003-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2763-
dc.description.abstractA linearized algorithm for solving inverse sensitivity equations of non-defective systems is presented. It is based on the orthonormal decomposition of the first order directional derivatives and directional continuity along τ of the τ−λ base. The least-squares methods which minimize the trace of eigenmode matrix suggested by Pešek and Lallement, respectively, for self-adjoint systems are extended to general non-defective systems in this paper. Moreover, the new algorithm has intuitive simple geometrical significance and is consistent with the first order Taylor expansion of the τ−λ base. The numerical results calculated from the aforementioned three methods are compared, respectively, with the exact solution using two simulation examples. It demonstrates that the results of the proposed algorithm are the nearest to the exact solution.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Sound and Vibrationen_US
dc.titleA linearized procedure for solving inverse sensitivity equations of non-defective systemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1006/jsvi.2002.5180-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0022-460Xen_US
dc.description.volume259en_US
dc.description.issue3en_US
dc.description.startpage513en_US
dc.description.endpage524en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.