Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2738
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherTsang, D. K. L.-
dc.contributor.otherOyadiji, S. O.-
dc.date.accessioned2022-03-25T02:09:05Z-
dc.date.available2022-03-25T02:09:05Z-
dc.date.issued2004-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2738-
dc.description.abstractThe fractal-like finite element method is an accurate and efficient method to determine the stress intensity factors (SIF) around crack tips. The use of a self-similar mesh together with the William's eigenfunctions reduce the number of unknowns significantly. The SIFs are the primary unknowns and no post-processing is required. In all previous studies, we used the analytic eigenfunction expression to perform the global transformation. However, the eigenfunction cannot be found analytically in general crack problems. Two-dimensional axisymmetrical cracks are considered here. The resulting static equilibrium equations in local co-ordinates are non-homogeneous ordinary differential equations, for which the analytic eigenfunction cannot be found completely. We use a finite difference method to determine all the eigenfunctions needed numerically. Our evaluated SIF values show very close agreement with published results.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley & Sonsen_US
dc.relation.ispartofInternational Journal for Numerical Methods in Engineeringen_US
dc.titleApplications of numerical eigenfunctions in the fractal-like finite element methoden_US
dc.typejournal articleen_US
dc.identifier.doi10.1002/nme.1071-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1097-0207en_US
dc.description.volume61en_US
dc.description.issue4en_US
dc.description.startpage475en_US
dc.description.endpage495en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.