Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2728
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherChen, Q.-
dc.contributor.otherKruger, U.-
dc.date.accessioned2022-03-24T09:14:10Z-
dc.date.available2022-03-24T09:14:10Z-
dc.date.issued2004-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2728-
dc.description.abstractProcess systems often present multiple operating regions, for example as a result of grade changes, and some systems produce data with very small variation. In both cases, the training data sets would be discretely clustered, which causes great difficulties in extracting the probability density function (PDF) for process condition monitoring. To overcome this obstacle, a regularisation method is suggested which adds some carefully designed noise into the training data set to stabilise the procedure of a non-parametric algorithm. A deconvolution method is employed to recover the PDF of the original data set. The kernel density estimation (KDE) method is chosen as the non-parametric algorithm to extract the PDF and confidence intervals of the training data sets. Three case studies show that it is a pragmatic method for dealing with real industrial process data.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofControl Engineering Practiceen_US
dc.titleRegularised kernel density estimation for clustered process dataen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/S0967-0661(03)00083-2-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0967-0661en_US
dc.description.volume12en_US
dc.description.issue3en_US
dc.description.startpage267en_US
dc.description.endpage274en_US
dc.cihe.affiliatedNo-
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.grantfulltextnone-
item.openairetypejournal article-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.