Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2715
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherChen, Q.-
dc.contributor.otherKruger, U.-
dc.contributor.otherMeronk, M.-
dc.date.accessioned2022-03-24T06:05:46Z-
dc.date.available2022-03-24T06:05:46Z-
dc.date.issued2004-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2715-
dc.description.abstractIn this work, a novel approach that synthesizes the T<sup>2</sup> and Q statistics for statistical process condition monitoring is introduced. The synthesis is based on the joint probability density function of the two statistics, which is estimated with kernel density estimation. This inherits the following benefits: (i) it can be more sensitive to detect abnormal process behaviour than the individual statistics and (ii) it reduces the number of monitoring charts to be observed. The utility of this new approach is demonstrated using two application studies that involve the simulation of a fluid catalytic cracking unit and recorded data from an industrial distillation unit.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofControl Engineering Practiceen_US
dc.titleSynthesis of T2 and Q statistics for process monitoringen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.conengprac.2003.08.004-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0967-0661en_US
dc.description.volume12en_US
dc.description.issue6en_US
dc.description.startpage745en_US
dc.description.endpage755en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.