Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2670
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherXu, X.-S.-
dc.contributor.otherGu, Q.-
dc.contributor.otherZheng, J.-J.-
dc.date.accessioned2022-03-23T03:56:02Z-
dc.date.available2022-03-23T03:56:02Z-
dc.date.issued2005-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2670-
dc.description.abstractThis paper reports establishment of a symplectic system and introduces a 3D sub-symplectic structure for transversely isotropic piezoelectric media. A complete space of eigensolutions is obtained directly. Thus all solutions of the problem are reduced to finding eigenvalues and eigensolutions, which include zero-eigenvalue solutions and all their Jordan normal form of the corresponding Hamiltonian matrix and non-zero-eigenvalue solution. The classical solutions are described by zero-eigen-solutions and non-zero-eigensolutions show localized solutions. Numerical results show some rules of non-zero-eigenvalue and their eigensolutions.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofJournal of Zhejiang University SCIENCE Aen_US
dc.titleA symplectic eigensolution method in transversely isotropic piezoelectric cylindrical mediaen_US
dc.typejournal articleen_US
dc.identifier.doi10.1631/jzus.2005.A0922-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1862-1775en_US
dc.description.volume6en_US
dc.description.issue9-
dc.description.startpage922en_US
dc.description.endpage927en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.