Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2639
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherKuang, J. L.-
dc.date.accessioned2022-03-22T05:06:52Z-
dc.date.available2022-03-22T05:06:52Z-
dc.date.issued2006-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2639-
dc.description.abstractIn this paper, the nonlinear dynamics of the disturbed Hamiltonian systems of a suspended gyrostat with five degrees of freedom are investigated in detail. The periodic motions of the torque-free symmetrical gyrostat are derived in terms of elliptic functions. The necessary conditions for the occurrence of chaotic oscillations of the disturbed, suspended gyrostat, either dissipative or conservative, are obtained via the Melnikov-Holmes-Marsden integrals. The MHM integrals built on the homoclinic orbits of the torque-free gyrostat and excitation-free spherical pendulum are utilized to establish the transversal homoclinic intersections between the stable and unstable manifolds of the associated Poincare map of the investigated system with perturbations. The results of the theoretical analyses are cross-checked with numerical simulation.en_US
dc.language.isoenen_US
dc.publisherSage Publicationsen_US
dc.relation.ispartofJournal of Vibration and Controlen_US
dc.titleNonlinear oscillations of a suspended gyrostaten_US
dc.typejournal articleen_US
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1741-2986en_US
dc.description.volume12en_US
dc.description.issue7en_US
dc.description.startpage773en_US
dc.description.endpage799en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online173 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.