Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2572
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherChen, Q.-
dc.contributor.otherWorden, K.-
dc.contributor.otherPeng, P.-
dc.date.accessioned2022-03-15T06:54:34Z-
dc.date.available2022-03-15T06:54:34Z-
dc.date.issued2007-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2572-
dc.description.abstractIn this article a new fitness function is introduced in an attempt to improve the quality of the auto-regressive with exogenous inputs (ARX) model using a genetic algorithm (GA). The GA is employed to identify the coefficients and the number of time lags of the models of dynamic systems with the new fitness function which is based on the prediction error and the correlation functions between the prediction error and the input and output signals. The new fitness function provides the GA with a better performance in the evolution process. Two examples of the ARX modelling of a linear and a non-linear (NARX) simulated dynamic system are examined using the proposed fitness function.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofMechanical Systems and Signal Processingen_US
dc.titleGenetic algorithm with an improved fitness function for (N)ARX modellingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.ymssp.2006.01.011-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0888-3270en_US
dc.description.volume21en_US
dc.description.issue2en_US
dc.description.startpage994en_US
dc.description.endpage1007en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.