Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2506
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherDing, Q.-
dc.date.accessioned2022-03-07T04:47:58Z-
dc.date.available2022-03-07T04:47:58Z-
dc.date.issued2009-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2506-
dc.description.abstractThis paper investigates the generalized mixed Rayleigh–Liénard oscillator with highly nonlinear terms. Not restrict to the number of limit cycles, this analysis considers mainly the number of limit cycle bifurcation diagrams of the system. First, the singularity theory approach is applied to the first-order averaged approximation of the system with lower-order nonlinear terms to reveal all possible bifurcation diagrams. By summarizing the generating rule and structural distinction of different bifurcation diagrams, a numerical procedure is then developed. Calculation suggests that the number of bifurcation diagrams increase very fast as the order of nonlinear terms. Lastly, numerical simulations are adopted to approve the analytical results.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Sound and Vibrationen_US
dc.titleThe number of limit cycle bifurcation diagrams for the generalized mixed Rayleigh–Liénard oscillatoren_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.jsv.2008.11.014-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0022-460Xen_US
dc.description.volume322en_US
dc.description.issue1-2en_US
dc.description.startpage393en_US
dc.description.endpage400en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.