Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2480
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherGuo, Z-
dc.contributor.otherFung, T. C.-
dc.date.accessioned2022-03-04T07:04:43Z-
dc.date.available2022-03-04T07:04:43Z-
dc.date.issued2010-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2480-
dc.description.abstractThe analytical solutions of a simple nonlinear equation, e.g., the Duffing equation, can be highly complicated. Homotopy continuation on just one parameter can hardly produce the whole picture, in particular, of the multiple bifurcations in multi-parameter space. This paper reports on the development of the multi-parameter homotopy harmonic balance method for the steady state solutions of a nonlinear vibration problem. The total and tangential stiffnesses with respect to the Fourier components of polynomial nonlinearity are given explicitly. New multiple solutions of the Duffing equation are given for the first time. The period doubling to chaos is interpreted in a new way. Finally, the bifurcation surfaces of folding and period doubling are constructed.en_US
dc.language.isoenen_US
dc.publisherTaylor & Francisen_US
dc.relation.ispartofInternational Journal of Computer Mathematicsen_US
dc.titleThe multi-parameter homotopy harmonic balance method for steady state problemsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1080/00207160903229899-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0020-7160en_US
dc.description.volume87en_US
dc.description.issue5en_US
dc.description.startpage1158en_US
dc.description.endpage1177en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypejournal article-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online222 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.