Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2310
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.otherDu, B.-
dc.contributor.otherYang, X.-
dc.date.accessioned2022-02-17T07:53:07Z-
dc.date.available2022-02-17T07:53:07Z-
dc.date.issued2015-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2310-
dc.description.abstractHEVC (High Efficiency Video Coding) achieves cutting edge encoding efficiency and outperforms previous standards, such as the H.264/AVC. One of the key contributions to the improvement is the intra-frame coding that employs abundant coding unit (CU) sizes. However finding the optimal CU size is computationally expensive. To alleviate the intra encoding complexity and facilitate the real-time implementation, we use a machine learning technique: the random forests, for training. Based on off-line training, we propose using the forest classifier to skip or terminate the current CU depth level. In addition, neighboring CU size decisions are utilized to determine the current depth range. Experimental results show that our proposed algorithm can achieve 48.31% time reduction, with 0.80% increase in the Bjantegaard delta bitrate (BD-rate), which are state-of-the-art results compared with all algorithms in the literature.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleFast CU partition strategy for HEVC intra-frame Coding using learning approach via random forestsen_US
dc.typeconference proceedingsen_US
dc.relation.publication2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) Proceedingsen_US
dc.identifier.doi10.1109/APSIPA.2015.7415439-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9781467395939en_US
dc.description.startpage1093en_US
dc.description.endpage1098en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.