Please use this identifier to cite or link to this item:
https://repository.cihe.edu.hk/jspui/handle/cihe/2307
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Siu, Wan Chi | en_US |
dc.contributor.other | Ling, B. W.-K. | - |
dc.contributor.other | Ho, C. Y.-F. | - |
dc.contributor.other | Dai, Q. | - |
dc.date.accessioned | 2022-02-17T06:21:53Z | - |
dc.date.available | 2022-02-17T06:21:53Z | - |
dc.date.issued | 2015 | - |
dc.identifier.uri | https://repository.cihe.edu.hk/jspui/handle/cihe/2307 | - |
dc.description.abstract | When the exact unbiasedness condition is relaxed to a near unbiasedness condition, this short communication shows that the best linear near unbiased estimation problem is actually a semi-infinite programming problem. Our recently developed dual parameterization method is applied for solving the problem. Computer numerical simulation results show that the semi-infinite programming approach outperforms the least squares approach. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Computational Statistics & Data Analysis | en_US |
dc.title | Best linear near unbiased estimation for nonlinear signal models via semi-infinite programming approach | en_US |
dc.type | journal article | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.csda.2015.01.020 | - |
dc.contributor.affiliation | School of Computing and Information Sciences | en_US |
dc.relation.issn | 0167-9473 | en_US |
dc.description.volume | 88 | en_US |
dc.description.startpage | 111 | en_US |
dc.description.endpage | 118 | en_US |
dc.cihe.affiliated | No | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairetype | journal article | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_6501 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Yam Pak Charitable Foundation School of Computing and Information Sciences | - |
crisitem.author.orcid | 0000-0001-8280-0367 | - |
Appears in Collections: | CIS Publication |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.