Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2306
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.otherHuang, J.-J.-
dc.contributor.otherLiu, T.-R.-
dc.date.accessioned2022-02-17T06:17:51Z-
dc.date.available2022-02-17T06:17:51Z-
dc.date.issued2015-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2306-
dc.description.abstractThis paper proposes a two-stage framework for fast image interpolation via random forests (FIRF). The proposed FIRF method gives high accuracy, as well as requires low computation. The underlying idea of this proposed work is to apply random forests to classify the natural image patch space into numerous subspaces and learn a linear regression model for each subspace to map the low-resolution image patch to high-resolution image patch. The FIRF framework consists of two stages. Stage 1 of the framework removes most of the ringing and aliasing artifacts in the initial bicubic interpolated image, while Stage 2 further refines the Stage 1 interpolated image. By varying the number of decision trees in the random forests and the number of stages applied, the proposed FIRF method can realize computationally scalable image interpolation. Extensive experimental results show that the proposed FIRF(3, 2) method achieves more than 0.3 dB improvement in peak signal-to-noise ratio over the state-of-the-art nonlocal autoregressive modeling (NARM) method. Moreover, the proposed FIRF(1, 1) obtains similar or better results as NARM while only takes its 0.3% computational time.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Image Processingen_US
dc.titleFast image interpolation via random forestsen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TIP.2015.2440751-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1941-0042en_US
dc.description.volume24en_US
dc.description.issue10en_US
dc.description.startpage3232en_US
dc.description.endpage3245en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.