Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2305
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.otherHung, K.-W.-
dc.date.accessioned2022-02-17T06:12:30Z-
dc.date.available2022-02-17T06:12:30Z-
dc.date.issued2015-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2305-
dc.description.abstractImage interpolation is to convert a low-resolution (LR) image into a high-resolution (HR) image through mathematical modeling. An accurate model usually leads to a better reconstruction quality, and the autoregressive (AR) model is a widely adopted model for image interpolation. Although a large amount of works have been done on AR models for image interpolation, there are plenty of rooms for improvements. In this work, we propose a robust and precise k-nearest neighbors (k-NN) searching scheme to form an accurate AR model of the local statistic. We make use of both LR and HR information obtained from a large amount of training data, in order to form a coherent soft-decision estimation of both AR parameters and high-resolution pixels. Experimental results show that the proposed learning-based AR interpolation algorithm has a very competitive performance compared with the state-of-the-art image interpolation algorithms in terms of PSNR and SSIM values.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Visual Communication and Image Representationen_US
dc.titleLearning-based image interpolation via robust k-NN searching for coherent AR parameters estimationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.jvcir.2015.07.006-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1047-3203en_US
dc.description.volume31en_US
dc.description.startpage305en_US
dc.description.endpage311en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.