Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2304
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.date.accessioned2022-02-17T06:08:47Z-
dc.date.available2022-02-17T06:08:47Z-
dc.date.issued2015-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2304-
dc.description.abstractIn this paper, we propose a single-frame super-resolution algorithm using a finite impulse response (FIR) Wiener-filter, where the correlation matrices are estimated using the nonlocal means filter. The major contribution of this work is to make use of the nonlocal means-based FIR Wiener filter to form a new iterative framework which alternately improves the estimated correlation and the estimated high-resolution (HR) image. To minimize the mean squared error of the estimated HR image, we have tried to optimize several parameters empirically, including the hyper-parameters of the nonlocal means filter by using an efficient offline training process. Experimental results show that the trained iterative framework performs better than the state-of-the-art algorithms using sparse representations and Gaussian process regression in terms of PSNR and SSIM values on a set of commonly used standard testing images. The proposed framework can be directly applied to other image processing tasks, such as denoising and restoration, and content-specific tasks such as face super-resolution.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofSignal Processing: Image Communicationen_US
dc.titleSingle-image super-resolution using iterative Wiener filter based on nonlocal meansen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.image.2015.07.003-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0923-5965en_US
dc.description.volume39en_US
dc.description.issuePart Aen_US
dc.description.startpage26en_US
dc.description.endpage45en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.