Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2298
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.otherZhang, H.-B.-
dc.contributor.otherChan, Y.-L.-
dc.contributor.otherFu, C.-H.-
dc.contributor.otherTsang, S.-H.-
dc.date.accessioned2022-02-16T08:19:31Z-
dc.date.available2022-02-16T08:19:31Z-
dc.date.issued2016-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2298-
dc.description.abstract3D-HEVC is a good coding solution for multi-view video plus depth data. It achieves good coding performance of synthesized views. However, depth intra coding brings unbearable complexity, which is the most urgent issue to be solved for the practical applications. Typically, depth maps have a good feature of structure or less texture compared with natural videos. Therefore, in this paper, a fast depth intra coding algorithm is proposed to speed up the quadtree decision by the good feature-corner point (CP). The proposed algorithm can adaptively extract CPs and preallocate the depth level of coding quadtree. The large size of coding units (CUs) can be skipped for blocks, which have higher predicted depth level. On the contrary, the blocks, with lower predicted depth level, do not check the smaller size of CUs. Simulation results show that the proposed algorithm can provide about 41% time reduction while maintaining the BD performance.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleQuadtree decision for depth intra coding in 3D-HEVC by good featureen_US
dc.typeconference proceedingsen_US
dc.relation.publication2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)en_US
dc.identifier.doi10.1109/ICASSP.2016.7471923-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9781479999897en_US
dc.description.startpage1481en_US
dc.description.endpage1485en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.