Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2291
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.otherLiu, Z.-S.-
dc.contributor.otherHuang, J.-J.-
dc.date.accessioned2022-02-16T02:04:34Z-
dc.date.available2022-02-16T02:04:34Z-
dc.date.issued2017-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2291-
dc.description.abstractThis paper proposes a novel learning-based image super-resolution via a weighted random forest model (SWRF). The proposed method uses the LR-HR training data to train a random forest model. The underlying idea of this approach is to use several decision trees to classify the training data based on a simple splitting threshold value at each class. A linear regression model is learnt to map the relationship between LR and HR patches. During the up-sampling process, to obtain a more robust super-resolved HR image, instead of averaging the linear regression models from different trees, a biased weighting vector is learnt to adaptively super-resolve the LR image. Furthermore, we improve this proposed image super-resolution method via a weighted random forest model with rotation (SWRF-f) to further improve the super-resolution quality. Sufficient experimental results prove that the proposed approach can achieve the state-of-the-art super-resolution performance with reduced computation time.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleImage super-resolution via weighted random foresten_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of 2017 IEEE International Conference on Industrial Technology (ICIT)en_US
dc.identifier.doi10.1109/ICIT.2017.7915501-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9781509053216en_US
dc.description.startpage1019en_US
dc.description.endpage1023en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.