Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2290
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.otherLiu, Z.-S.-
dc.contributor.otherChan, Y.-L.-
dc.date.accessioned2022-02-16T01:59:04Z-
dc.date.available2022-02-16T01:59:04Z-
dc.date.issued2017-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2290-
dc.description.abstractThis paper proposes a novel learning-based image Super-Resolution via a Randomized Multi-split Forests model (SRRMF). The proposed method uses the LR-HR training patch pairs to model the nonlinear patch manifold into a pairs of linear subspaces. The key idea of this approach is to use several decision trees split randomly the training data into different classes. A linear regression model is learnt to map the relationship between LR and HR patches at the end of the leaf nodes. In order to make full use of the generalization ability of the random forests, we randomize the grow of the decision tree to cover more possibilities. Furthermore, we modify the splitting function by using Multi-Split Binary Test (MSBT) function so that we can use more feature information to derive more accurate classification result to match patch subspace. Extended experimental results show that image super-resolution using our proposed method can achieve the state-of-the-art super-resolution performance with reduced computation time.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleFast image super-resolution via Randomized Multi-split Forestsen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS)en_US
dc.identifier.doi10.1109/ISCAS.2017.8050991-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9781509014279en_US
dc.description.startpage2747en_US
dc.description.endpage2750en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.