Please use this identifier to cite or link to this item:
https://repository.cihe.edu.hk/jspui/handle/cihe/2286
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Siu, Wan Chi | en_US |
dc.contributor.other | Yang, X.-F. | - |
dc.date.accessioned | 2022-02-16T01:35:14Z | - |
dc.date.available | 2022-02-16T01:35:14Z | - |
dc.date.issued | 2017 | - |
dc.identifier.uri | https://repository.cihe.edu.hk/jspui/handle/cihe/2286 | - |
dc.description.abstract | Vehicle detection is the core function in any Driver Assistant System. Besides the challenge in various environmental conditions, the limitation in execution time and computing power is also critical. This paper proposes a shadow detection step that aims at recognizing the shadow part of the train in various environments (including very tough cases) to accelerate the detection process. We propose two shadow recognition approaches for railway trains. In our first approach, we propose a prioritized feature extraction scheme that examines multiple features such as HOG and Color Histogram hierarchically to achieve high robustness as well as preserve the fast detecting speed. Experiments show satisfying results. Subsequently we propose a second approach using machine learning that automatically learns the features and decisions via a modified decision tree classifier with a novel confidence measuring scheme. Experiments show further improvements in both accuracy and execution time. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.title | Vehicle detection under tough conditions using prioritized feature extraction with shadow recognition | en_US |
dc.type | conference proceedings | en_US |
dc.relation.publication | 2017 IEEE 22nd International Conference on Digital Signal Processing (DSP) Proceedings | en_US |
dc.identifier.doi | 10.1109/ICDSP.2017.8096060 | - |
dc.contributor.affiliation | School of Computing and Information Sciences | en_US |
dc.relation.isbn | 9781538618967 | en_US |
dc.cihe.affiliated | No | - |
item.languageiso639-1 | en | - |
item.fulltext | No Fulltext | - |
item.openairetype | conference proceedings | - |
item.grantfulltext | none | - |
item.openairecristype | http://purl.org/coar/resource_type/c_5794 | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | Yam Pak Charitable Foundation School of Computing and Information Sciences | - |
crisitem.author.orcid | 0000-0001-8280-0367 | - |
Appears in Collections: | CIS Publication |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.