Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2265
DC FieldValueLanguage
dc.contributor.authorZhao, Yingchaoen_US
dc.contributor.authorXie, Haoran-
dc.contributor.authorWang, Philips Fu Lee-
dc.contributor.otherChen, X.-
dc.contributor.otherRao, Y.-
dc.contributor.otherYin, J.-
dc.date.accessioned2022-02-15T04:18:29Z-
dc.date.available2022-02-15T04:18:29Z-
dc.date.issued2019-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2265-
dc.description.abstractTraditional methods of annotating the sentiment of an unlabeled document are based on sentiment lexicons or machine learning algorithms, which have shown low computational cost or competitive performance. However, these methods ignore the semantic composition problem displaying in several ways such as negative reversing and intensification. In this paper, we propose a new method for sentiment classification using negative and intensive sentiment supplementary information, so as to exploit the linguistic feature of negative and intensive words in conjunction with the context information. Particularly, our method can solve the domain-specific problem without relying on the external sentiment lexicons. Experimental results on two real-world datasets demonstrate the effectiveness of our proposed method.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofData Science and Engineeringen_US
dc.titleSentiment classification using negative and intensive sentiment supplement informationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s41019-019-0094-8-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn2364-1541en_US
dc.description.volume4en_US
dc.description.issue2en_US
dc.description.startpage109en_US
dc.description.endpage118en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypejournal article-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptRita Tong Liu School of Business and Hospitality Management-
crisitem.author.orcid0000-0001-8362-6735-
Appears in Collections:CIS Publication
Files in This Item:
File Description SizeFormat
View Online90 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.