Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/2262
DC FieldValueLanguage
dc.contributor.authorLeung, Andrew Yee Taken_US
dc.contributor.otherYang, H. X.-
dc.contributor.otherChen, J. Y.-
dc.date.accessioned2022-02-14T09:49:53Z-
dc.date.available2022-02-14T09:49:53Z-
dc.date.issued2014-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/2262-
dc.description.abstractWe investigate the steady state response of a simply supported viscoelastic column subject to axial harmonic excitation. The viscoelastic material is modeled in fractional derivative Kelvin sense. The equation of motion is derived and discretized by the Galerkin approximation resulting in a generalized Mathieu–Duffing equation with time delay. Bifurcations in parametric excitation can be eliminated by appropriate feedback gain and time delay. The bifurcating behavior for various fractional orders and material ratios are also investigated. New criteria of stability determination are established. Based on the Runge–Kutta method, numerical results are obtained and compared with analytical solutions for verification.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputers & Structuresen_US
dc.titleParametric bifurcation of a viscoelastic column subject to axial harmonic force and time-delayed controlen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.compstruc.2014.01.015-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0045-7949en_US
dc.description.volume136en_US
dc.description.startpage47en_US
dc.description.endpage55en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.