Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1698
DC FieldValueLanguage
dc.contributor.authorChiu, Dah Mingen_US
dc.contributor.otherChen, L.-
dc.contributor.otherZhou, Y.-
dc.date.accessioned2021-11-12T01:31:57Z-
dc.date.available2021-11-12T01:31:57Z-
dc.date.issued2015-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1698-
dc.description.abstractOnline video-on-demand (VoD) services invariably maintain a view count for each video they serve, and it has become an important currency for various stakeholders, from viewers, to content owners, advertizers, and the online service providers themselves. There is often significant financial incentive to use a robot (or a botnet) to artificially create fake views. How can we detect fake views? Can we detect them (and stop them) efficiently? What is the extent of fake views with current VoD service providers? These are the questions we study in this article. We develop some algorithms and show that they are quite effective for this problem.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.relation.ispartofACM Transactions on Multimedia Computing, Communications, and Applicationsen_US
dc.titleAnalysis and detection of fake views in online video servicesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1145/2700290-
dc.contributor.affiliationFelizberta Lo Padilla Tong School of Social Sciencesen_US
dc.relation.issn1551-6865en_US
dc.description.volume11en_US
dc.description.issue2sen_US
dc.cihe.affiliatedNo-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1en-
crisitem.author.deptFelizberta Lo Padilla Tong School of Social Sciences-
crisitem.author.orcid0000-0003-0566-5223-
Appears in Collections:SS Publication
Files in This Item:
File Description SizeFormat
View Online118 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.