Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1693
DC FieldValueLanguage
dc.contributor.authorChiu, Dah Mingen_US
dc.contributor.otherYang, C.-
dc.contributor.otherZhou, Y.-
dc.date.accessioned2021-11-11T09:48:51Z-
dc.date.available2021-11-11T09:48:51Z-
dc.date.issued2016-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1693-
dc.description.abstractIn this paper, we mine and learn to predict how similar a pair of users’ interests towards videos are, based on demographic, social and interest information of these users. We use the video access patterns of active users as ground truth. We adopt tag-based user profiling to establish this ground truth. We then show the effectiveness of the different features, and their combinations and derivatives, in predicting user interest similarity, based on different machine-learning methods for combining multiple features. We propose a hybrid tree-encoded linear model for combining the features, and show that it out-performs other linear and tree-based models. Our methods can be used to predict user interest similarity when the ground-truth is not available, e.g. for new users, or inactive users whose interests may have changed from old access data, and is useful for video recommendation.en_US
dc.language.isoenen_US
dc.publisherICWSMen_US
dc.titleWho are like-minded: Mining user interest similarity in online social networksen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the Tenth International AAAI Conference on Web and Social Media (ICWSM 2016)en_US
dc.contributor.affiliationFelizberta Lo Padilla Tong School of Social Sciencesen_US
dc.relation.isbn9781577357582en_US
dc.description.startpage731en_US
dc.description.endpage734en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptFelizberta Lo Padilla Tong School of Social Sciences-
crisitem.author.orcid0000-0003-0566-5223-
Appears in Collections:SS Publication
Files in This Item:
File Description SizeFormat
View Online104 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.