Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1684
DC FieldValueLanguage
dc.contributor.authorChiu, Dah Mingen_US
dc.contributor.otherYang, C.-
dc.contributor.otherYan, H.-
dc.contributor.otherYu, D.-
dc.contributor.otherLi, Y.-
dc.date.accessioned2021-11-11T06:08:14Z-
dc.date.available2021-11-11T06:08:14Z-
dc.date.issued2017-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1684-
dc.description.abstractAs online video service continues to grow in popularity, video content providers compete hard for more eyeball engagement. Some users visit multiple video sites to enjoy videos of their interest while some visit exclusively one site. However, due to the isolation of data, mining and exploiting user behaviors in multiple video websites remain unexplored so far. In this work, we try to model user preferences in six popular video websites with user viewing records obtained from a large ISP in China. The empirical study shows that users exhibit both consistent cross-site interests as well as site-specific interests. To represent this dichotomous pattern of user preferences, we propose a generative model of Multi-site Probabilistic Factorization (MPF) to capture both the cross-site as well as site-specific preferences. Besides, we discuss the design principle of our model by analyzing the sources of the observed site-specific user preferences, namely, site peculiarity and data sparsity. Through conducting extensive recommendation validation, we show that our MPF model achieves the best results compared to several other state-of-the-art factorization models with significant improvements of F-measure by 12.96%, 8.24% and 6.88%, respectively. Our findings provide insights on the value of integrating user data from multiple sites, which stimulates collaboration between video service providers.en_US
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.titleMulti-site user behavior modeling and its application in video recommendationen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrievalen_US
dc.identifier.doi10.1145/3077136.3080769-
dc.contributor.affiliationFelizberta Lo Padilla Tong School of Social Sciencesen_US
dc.relation.isbn9781450350228en_US
dc.description.startpage175en_US
dc.description.endpage184en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextWith Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptFelizberta Lo Padilla Tong School of Social Sciences-
crisitem.author.orcid0000-0003-0566-5223-
Appears in Collections:SS Publication
Files in This Item:
File Description SizeFormat
View Online126 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.