Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1676
DC FieldValueLanguage
dc.contributor.authorChiu, Dah Mingen_US
dc.contributor.otherZhou, Y.-
dc.contributor.otherWu, J.-
dc.contributor.otherChan, T. H.-
dc.contributor.otherHo, S. W.-
dc.contributor.otherWu, D.-
dc.date.accessioned2021-11-11T03:16:26Z-
dc.date.available2021-11-11T03:16:26Z-
dc.date.issued2018-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1676-
dc.description.abstractAll large-scale online video systems, for example, Netflix and Youku, make a significant investment on video recommendations that can dramatically affect video information diffusion processes among users. However, there is a lack of efficient methodology to interpret how various recommendation mechanisms affect information diffusion processes resulting in the difficulty to evaluate video recommendation efficiency. In this paper, we propose to quantify and explain video recommendation mechanisms by using epidemic models to mine video view count traces. It is well known that an epidemic model is an efficient approach to model information diffusion processes; while view count traces can be viewed as the results of video information diffusion driven by video recommendations. Thus, we propose a framework based on extended epidemic models to quantify and interpret two recommendation mechanisms, that is, direct and word-of-mouth (WOM) recommendations, by fitting video view count traces collected from Tencent Video, a large-scale online video system in China. Our approach is a novel methodology to evaluate video recommendation mechanisms, and a new perspective to interpret how recommendation mechanisms drive view count evolution.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Multimediaen_US
dc.titleInterpreting video recommendation mechanisms by mining view count tracesen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TMM.2017.2781364-
dc.contributor.affiliationFelizberta Lo Padilla Tong School of Social Sciencesen_US
dc.relation.issn1941-0077en_US
dc.description.volume20en_US
dc.description.issue8en_US
dc.description.startpage2153en_US
dc.description.endpage2165en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.openairetypejournal article-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptFelizberta Lo Padilla Tong School of Social Sciences-
crisitem.author.orcid0000-0003-0566-5223-
Appears in Collections:SS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.