Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1614
DC FieldValueLanguage
dc.contributor.authorLiu, Xuetingen_US
dc.contributor.authorLi, Chengze-
dc.contributor.otherWu, H.-
dc.contributor.otherLi, Y.-
dc.contributor.otherWu, W.-
dc.date.accessioned2021-11-01T02:57:26Z-
dc.date.available2021-11-01T02:57:26Z-
dc.date.issued2021-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1614-
dc.description.abstractTexture plays an important role in cartoon images to represent materials of objects and enrich visual attractiveness. However, manually crafting a cartoon texture is not easy, so amateurs usually directly use cartoon textures downloaded from the Internet. Unfortunately, Internet resources are quite limited and often patented, which restrict the users from generating visually pleasant and personalized cartoon textures. In this paper, we propose a deep learning based method to generate cartoon textures from natural textures. Different from the existing photo cartoonization methods that only aim to generate cartoonic images, the key to our method is to generate cartoon textures that are both cartoonic and regular. To achieve this goal, we propose a regularization module to generate a regular natural texture with similar appearance as the input, and a cartoonization module to cartoffonize the regularized natural texture into a regular cartoon texture. Our method successfully produces cartoonic and regular textures from various natural textures.en_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofComputers & Graphicsen_US
dc.titleDeep texture cartoonization via unsupervised appearance regularizationen_US
dc.typejournal articleen_US
dc.identifier.doi10.1016/j.cag.2021.04.015-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn0097-8493en_US
dc.description.volume97en_US
dc.description.startpage99en_US
dc.description.endpage107en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.