Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1515
DC FieldValueLanguage
dc.contributor.authorBligh, Annie Sim Wanen_US
dc.contributor.otherOgegbo, O. L.-
dc.contributor.otherEyob, S.-
dc.contributor.otherParmar, S.-
dc.contributor.otherWang, Z.-T.-
dc.date.accessioned2021-10-15T10:47:40Z-
dc.date.available2021-10-15T10:47:40Z-
dc.date.issued2012-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1515-
dc.description.abstractThis metabolomics study involves the multivariate analysis (MVA) of the HPTLC fingerprints of non-polar phyto-chemicals in four popular medicinal herbs' dried roots ‘<i>radix</i>’ (<i>Aster tataricus</i>, <i>Atractylodes lancea</i>, <i>Gentiana rigescens</i> and <i>Gentiana macrophylla</i>). These herbal products have been and are still being used in traditional Chinese medicine for treating many ailments. The extraction of these non-polar phyto-chemicals was carried out using petroleum ether and analysed by HPTLC using a developing solvent mixture of toluene–ethyl acetate (15 : 1). Three main MVAs were employed for statistical data exploration: Principal Component Analysis (PCA), Partial Least Squares-Discriminant Analysis (PLS-DA) and orthogonal PLS-DA. The model score plot results showed that all three MVAs showed very good spatial distributions with clear clusters/grouping of each herb. Also, statistically, all three models had high reproducibility and predictivity values (≫0.5). In conclusion, HPTLC with its simplicity and robustness should be explored in the application of MVA.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.ispartofAnalytical Methodsen_US
dc.titleMetabolomics of four TCM herbal products: Application of HPTLC analysisen_US
dc.typejournal articleen_US
dc.identifier.doi10.1039/C2AY25373A-
dc.contributor.affiliationSchool of Health Sciencesen_US
dc.relation.issn1759-9679en_US
dc.description.volume4en_US
dc.description.issue8en_US
dc.description.startpage2522en_US
dc.description.endpage2527en_US
dc.cihe.affiliatedNo-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
item.openairetypejournal article-
item.languageiso639-1en-
crisitem.author.deptS.K. Yee School of Health Sciences-
crisitem.author.orcid0000-0002-4757-2159-
Appears in Collections:HS Publication
Files in This Item:
File Description SizeFormat
Check Library Catalogue115 BHTMLView/Open
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.