Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1264
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.otherKuang, W.-
dc.contributor.otherChan, Y.-L.-
dc.contributor.otherTsang, S.-H.-
dc.date.accessioned2021-08-12T07:38:20Z-
dc.date.available2021-08-12T07:38:20Z-
dc.date.issued2018-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1264-
dc.description.abstractScreen Content Coding (SCC) is an extension of the High-Efficiency Video Coding (HEVC) for encoding screen content videos. However, there are many legacy screen content videos already encoded by HEVC. To efficiently migrate screen content videos from the existing HEVC to the emerging SCC, a machine learning based fast transcoding algorithm is proposed by using decision trees in this paper. To speed up the transcoding process, the intermediate data from both the HEVC decoder side and the SCC encoder side are jointly analyzed. Then the optimal coding unit (CU) sizes are mapped from HEVC to SCC while the mode candidates are adaptively checked according to the decision tree outcomes in the re-encoding process. Experimental results show that an average of 48.20% re-encoding time reduction is achieved with only 1.47% Bjontegaard delta bitrate loss using All Intra (AI) configuration.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleFast HEVC to SCC transcoding based on decision treesen_US
dc.typeconference proceedingsen_US
dc.relation.publication2018 IEEE International Conference on Multimedia and Expo (ICME) Proceedingsen_US
dc.identifier.doi10.1109/ICME.2018.8486461-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9781538617373en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.