Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1263
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.authorLiu, Zhisong-
dc.date.accessioned2021-08-12T07:22:31Z-
dc.date.available2021-08-12T07:22:31Z-
dc.date.issued2018-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1263-
dc.description.abstractDue to the development of deep learning, image super- resolution has achieved huge improvement on both subjective and objective qualities. However, the computation is still a problem for real-time applications. In this paper, we propose a Cascaded Random Forest for Image Super-Resolution (CRFSR) which screens sufficient simple features to train a much robust and efficient model for image super-resolution. To further boost up the super-resolution performance, an extra Gaussian Mixture Model (GMM) based layer is added as the final refinement. Extensive experimental results show that the cascaded decision trees continue performing better when more features are selected for refinement. The analysis on both computation time and reconstruction fidelity indicates the superior performance of our proposed CRFSR and CRFSR+ with extra GMM-based layer on natural images.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.titleCascaded random forests for fast image super-resolutionen_US
dc.typeconference proceedingsen_US
dc.relation.publicationProceedings of 2018 25th IEEE International Conference on Image Processing (ICIP)en_US
dc.identifier.doi10.1109/ICIP.2018.8451349-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9781479970629en_US
dc.description.startpage2531en_US
dc.description.endpage2535en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
crisitem.author.orcid0000-0003-4507-3097-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.