Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1252
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.authorLiu, Zhisong-
dc.contributor.otherWang, L.-W.-
dc.contributor.otherLi, C.-T.-
dc.contributor.otherLun, D. P. K.-
dc.date.accessioned2021-08-11T09:46:44Z-
dc.date.available2021-08-11T09:46:44Z-
dc.date.issued2020-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1252-
dc.description.abstractManipulating the light source of given images is an interesting task and useful in various applications, including photography and cinematography. Existing methods usually require additional information like the geometric structure of the scene, which may not be available for most images. In this paper, we formulate the single image relighting task and propose a novel Deep Relighting Network (DRN) with three parts: 1) scene reconversion, which aims to reveal the primary scene structure through a deep auto-encoder network, 2) shadow prior estimation, to predict light effect from the new light direction through adversarial learning, and 3) re-renderer, to combine the primary structure with the reconstructed shadow view to form the required estimation under the target light source. Experiments show that the proposed method outperforms other possible methods, both qualitatively and quantitatively. Specifically, the proposed DRN has achieved the best PSNR in the “AIM2020 - Any to one relighting challenge” of the 2020 ECCV conference.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.titleDeep relighting networks for image light source manipulationen_US
dc.typeconference proceedingsen_US
dc.relation.publicationComputer Vision – ECCV 2020 Workshops Proceedings, Part IIIen_US
dc.identifier.doi10.1007/978-3-030-67070-2_33-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.isbn9783030670696en_US
dc.description.startpage550en_US
dc.description.endpage567en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypeconference proceedings-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
crisitem.author.orcid0000-0003-4507-3097-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.