Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/1242
DC FieldValueLanguage
dc.contributor.authorSiu, Wan Chien_US
dc.contributor.otherKuang, W.-
dc.contributor.otherChan, Y.-L.-
dc.contributor.otherTsang, S.-H.-
dc.date.accessioned2021-08-11T07:03:15Z-
dc.date.available2021-08-11T07:03:15Z-
dc.date.issued2020-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/1242-
dc.description.abstractScreen content coding (SCC) is an extension of high efficiency video coding (HEVC), and it is developed to improve the coding efficiency of screen content videos by adopting two new coding modes: Intra Block Copy (IBC) and Palette (PLT). However, the flexible quadtree-based coding tree unit (CTU) partitioning structure and various mode candidates make the fast algorithms of the SCC extremely challenging. To efficiently reduce the computational complexity of SCC, we propose a deep learning-based fast prediction network DeepSCC that contains two parts: DeepSCC-I and DeepSCC-II. Before feeding to DeepSCC, incoming coding units (CUs) are divided into two categories: dynamic CTUs and stationary CTUs. For dynamic CTUs having different content as their collocated CTUs, DeepSCC-I takes raw sample values as the input to make fast predictions. For stationary CTUs having the same content as their collocated CTUs, DeepSCC-II additionally utilizes the optimal mode maps of the stationary CTU to further reduce the computational complexity. Compared with the HEVC-SCC reference software SCM-8.3, the proposed DeepSCC reduces the encoding time by 48.81% on average with a negligible Bjøntegaard delta bitrate increase of 1.18% under all-intra configuration.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofIEEE Transactions on Circuits and Systems for Video Technologyen_US
dc.titleDeepSCC: Deep learning based fast prediction network for screen content codingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1109/TCSVT.2019.2929317-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1558-2205en_US
dc.description.volume30en_US
dc.description.issue7en_US
dc.description.startpage1917en_US
dc.description.endpage1932en_US
dc.cihe.affiliatedNo-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
crisitem.author.orcid0000-0001-8280-0367-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.