Please use this identifier to cite or link to this item: https://repository.cihe.edu.hk/jspui/handle/cihe/111
DC FieldValueLanguage
dc.contributor.authorLiu, Xuetingen_US
dc.contributor.otherZhang, Z.-
dc.contributor.otherHan, C.-
dc.contributor.otherHe, S.-
dc.contributor.otherZhu, H.-
dc.contributor.otherHu, X.-
dc.contributor.otherWong, T.-T.-
dc.date.accessioned2021-03-02T05:46:26Z-
dc.date.available2021-03-02T05:46:26Z-
dc.date.issued2019-
dc.identifier.urihttps://repository.cihe.edu.hk/jspui/handle/cihe/111-
dc.description.abstractBinocular tone mapping is studied in the previous works to generate a fusible pair of LDR images in order to convey more visual content than one single LDR image. However, the existing methods are all based on monocular tone mapping operators. It greatly restricts the preservation of local details and global contrast in a binocular LDR pair. In this paper, we proposed the first binocular tone mapping operator to more effectively distribute visual content to an LDR pair, leveraging the great representability and interpretability of deep convolutional neural network. Based on the existing binocular perception models, novel loss functions are also proposed to optimize the output pairs in terms of local details, global contrast, content distribution, and binocular fusibility. Our method is validated with a qualitative and quantitative evaluation, as well as a user study. Statistics show that our method outperforms the state-of-the-art binocular tone mapping frameworks in terms of both visual quality and time performance.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofThe Visual Computeren_US
dc.titleDeep binocular tone mappingen_US
dc.typejournal articleen_US
dc.identifier.doi10.1007/s00371-019-01669-8-
dc.contributor.affiliationSchool of Computing and Information Sciencesen_US
dc.relation.issn1432-2315en_US
dc.description.volume35en_US
dc.description.startpage997en_US
dc.description.endpage1011en_US
dc.cihe.affiliatedYes-
item.languageiso639-1en-
item.fulltextNo Fulltext-
item.openairetypejournal article-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.cerifentitytypePublications-
crisitem.author.deptYam Pak Charitable Foundation School of Computing and Information Sciences-
Appears in Collections:CIS Publication
SFX Query Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.